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SECTION I
INTRODUCTION

With reference to Fig. 1, consider the flow about a finite-span pure]-
jet-flapped wing with partial or full-span blowing2 of the jet sheets.
The motivation for study of this flow is the possible use of jet flaps
for maneuvering combat aircraft at high subsonic and transonic speeds.
This contrasts with the more conventional application of the jet-flap
supercirculation principle wherein the jet sheets are employed to augment
the 1ift of a mechanical flap during the takeoff or landing flight phase
of an aircraft. In this latter application, compressibility effects are
of secondary importance.

On the assumption of small flow perturbations and a restriction to
wings without dihedral and twist, linear-subsonic and nonlinear-transonic
similarity rules are derived herein for the subject fiow. In developing
these similarity rules a new jet-sheet compatibility condition, which is
second order relative to the jet-sheet internal flow, is derived. The
new compatibility condition yields a jet-momentum coefficient similarity
parameter differing from the conventional parameter in that it includes
the effect of the jet-supply pressure ratio. In application of the
similarity laws, particular attention is given to camber-line effects
which heretofore have been unimportant in applications involving jet-
augmented mechanical flaps.

The nonlinear transonic similarity rules derived herein for jet-
flapped wings are new (to the best of the author's knowledge). For
the linear-subsonic case, however, similarity laws for jet-flapped wings
previously have been presented by Siestrunk (Ref. 1), Levinsky (Ref. 2),
and Elzweig (Ref. 3). Each of these investigators employs a different

]That is, a wing employing jet sheets alone, unassisted by mechanical

devices such as flaps or ailerons.

2For convenience in discussion, reference to a "blown" or “unblown" wing
will connote, respectively, a wing with or without the jet flaps
operating.
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scaling law, and only Levinsky considers the finite-span wing; the other
treatments are for two-dimensional flow. The present treatment is more
general than the foregoing ones in that it applies to both two- and three-
dimensional wings, allows for the selection of the scaling law most
appropriate to the particular problem under consideration, and includes

a second-order scaling of the jet internal flow that accounts for the
jet-supply pressure ratio. The laws employed herein reduce to those of
the aforementioned investigators upon appropriate selection of the
parameters.

As a consequence of the assumption of small perturbations, application
of the present results obviously is limited to small thickness and
camber ratios, small angles of attack, and small jet-deflection angles.
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SECTION II
ANALYSIS

For an untwisted wing with camber and thickness, but without
dihedral, the geometry may be given by

z¥ = oF (x*, y*; gi(T), gi(x), %5, gf %)
where (1)

K
T T e R I TaO S
ag

with a specified spanwise blowing distribution given by

cy = cq (y%)) (2)
o b e

The 9; quantities in Eq. 1 are the nondimensional geometric parameters
required to define the specific wing geometry being considered, with

gi(r)sgl(r), gz(r), _______ gr(l:) SRR TR e N
(3)
gi(K)’BI(K)’ 82(‘()» """"" gn:K)s 1=1,2,3, —n

For some configurations, some of the gi(T), gi(K) parameters may be
identical (e.g., g](T)= 9 (k) The parameter o may be selected to be
any one of the parameters T, K., O, ej or Gj depending upon the type
of problem under consideration.

For definiteness, it is of interest to apply the foregoing relations
to a specific class of wings designated as “trapezoidal."” A "trapezoidal
wing" is defined herein as a wing (without dihedral or twist) for which
the half-span planform is a trapezoid with the root and tip chords
parallel, the wing-section geometries affine to each other at varying
spanwise stations, and the section characteristic dimensions (chord,
thickness, camber height, etc.) vary linearly in the spanwise direction.

S |
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For this class of wings, the functions in Eq. 1 have the form

fT = fT(x*, y*; A tan A, kc, kt) (4)

f'< = fK(x*, y*; A tan A, A, AK)

where
(T) = ng) = A tan A
ir) Sao iy
%r) 2 xz g(K)c= A (5)
?r) - i’) 2 .

Explicit forms of the fT- and fK ~ functions are not displayed
since they serve no useful purpose here. They are easily derived,
however, if required.

Deflected ailerons and flaps may be treated by introducing additional
“camber-1ike" functions.

The governing partial differential equation for the perturbation

3 velocity potential (Ref. 5) is

1 2 2 2

i 2 979 B aiap i 0 9

1 Bo 3x? "‘3 +5e8 = 0k 5y gt (6)
B |

where for linear subsonic compressible flow j = 0, and for nonlinear
transonic flow j = 1.

The shock-wave compatibility condition (Ref. §) is

B2 (88,02 + (Ady)2 + (842)2 = k () (9x, + dx,) (Adx)? (7)

where the subscripts x, y, and z denote partial derivatives, and A
denotes a jump in the modified quantity such that if "1" and "2" denote,
respectively, upstream and downstream conditions relative to the shock

Ad)x - ¢X'| - ¢x2’ Etc.

A R
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If the lateral-flow velocity perturbations are assumed to be neglible

compared to the vertical and longitudinal ones, the jet-sheet compatibility

condition (see Appendix A) is

1 3 c ,90
g (3;%)2 = £ G35 Kyey

Um =
where
Ky = 1 : for (1;/P‘,° 5_5/5*)
K, =1- 3 (- %fgi) for (B/p, < Plp, < 5

For y = 1.4, P/p, = 1.893

The boundary conditions at x = - * and y = *+ « are

The wing surface boundary condition is

99 =1 9 e D sl i
(az)z_ Vo Gsn e gl b e )

The jet-sheet boundary condition is

05 (x*, y*, 0) = (3¢/02),_,/U,

We now introduce the transformations

X = 8yX, ¥ = syy, % = szz, ¢ = s¢¢

~ ~

= s,U,, B, = sgb,, (U_K) = s (UJ)

(8)

(9)

(10)

(1)

(12)

(13)

(14)

Flow similarity is achieved by determining appropriate values of the
s-stretching factors as dictated by the governing equations and boundary

conditions.

The boundary conditions specified by Eq. 11 are obviously preserved
by the transformations of Eq. 14.
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We consider first the constraints imposed on the stretching factors
by the governing partial differential equation, Eq. 6, and the shock
compatibility condition, Eq. 7. Applying the transformations of Eq. 14
yields the governing differential equation:

anis 2= 2 823 2 a2z s,.83 7 a0z

s 2 9% s..ag s 3¢ _ ux ~ 3¢ 9 (]5)
_éx ey ety i e B — 7 K 3% 3%
s 5.¢ 8@ ax S¢ ay‘ S¢ az j sksg ax ax

and for the shock compatibility condition

2 2 3 % 5
AR s a2 ~ 2 88y ~ y4fxy. .~
7 Be (802 + =% (M) + 2 (M) = —F k G0,
sgsg x S4 y s z 5154 2 x’ 16)

Comparison of Eqs. 6 and 15 for the linear and nonlinear problems and

Eqs. 7 and 16 for the nonlinear problems yields the following conditions
for flow similarity

Linear

s2 s s (17a)
X ( L] x) = an arbitrary constant
sk S A
Nonlinear
& 2
:x_ = 32 = 82 = ax S Sx
& Ry (17b)

For the linear case, the freedom in choice of the parametric
combination (susx3/sks¢) introduces the option of an additional degree
of freedom in the scaling. This option is a well-known property of
subsonic scaling laws (see, e.g., Refs. 5 and 6).

Equations 17a and 17b may be generalized in the following manner

- NG Sux 18
:‘é 8 = 82 Hg(%) (18)

x
i
i

RGOS i MY g ) 1 R

SR ROIRA it e AR A SR
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where

¢/e = an arbitrary constant (Linear) (19)

€/e = (0 _kMu_k) (Non-1linear) (20)

For the linear case, the ratio (£/e) is analogous to the ratio (x/1)
employed by Spreiter (Ref. 5). The two ratios3 are related by

"
PN

(/e) = (Buw2A/B2 1).

e

Equating the first and third terms in Eq. 18 yields Sy = sBsz. from
which it may be determined that

vl 94~

3u3x o~ susz
( 5o )= ag K o

) (21)

A s

In the analyses which follow, (su/s¢) always appears in one of the
parenthetical combinations shown in Eq. 21. The stretching factors Sy
and s, therefore need not be determined separately and the quantities
(susx/s¢) and (susz/s¢) may be treated as unknown parameters.

B R bl i

Substituting Eq. 21 in Eq. 18 yields, with Q/Q = s¢/susz
82 ° By T %2 T @) (4/0)

The relation Eq. 22 defines three equations relating the stretching
factors. This set of equations may have a variety of forms, depending
upon the algebraic manipulations performed. The forms used herein are

A
B MRt NPT P mm G Lo Y e Fag N e e

8y (ch/enyt/3= Sx (23)
: sz (E/em) /3= oy (24)
| 3/0 = (Boo/B)3(e/?) (25)

The symbol A is Spreiter's A, not the )\ used herein
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The principal linear dimensions of the original and transformed
wings are related by

& = 8yCr; b = Syb; tr = sty o
y1 = sny; Yo = SyYo
yielding
Xk = Xk; §* = yk; (56)1’32* = (em/324
(27)

£ i B T b

The transformation relations, Eq. 14, and the similarity conditions of
Egqs. 17a and 17b also yield

(tan~K)/é@ = (tan A)/B, (28)
BwA = BoA (29)

Any one of the parameters Sy sy or s, in Eq. 26 may be assigned an
arbitrary value. For unit values of Sy» sy, and s, respectively, Eq. 26
indicates that wings of identical root chord, span, or root thickness
respectively are being compared in the original and transformed spaces.

A common selection is ST 1.0

To achieve manageable results, it is necessary to assume that
?T =f. ?K = f_, and F = F. That is, the analysis is confined to
families of wings defined by these constraints. The wing geometry in the

transformed space then becomes

TR R
2% = OF (%X*, y*; 8%, 8, 5 55, % ) (30)

where
F = tEE- (X%, 9% gy (T)) +._ £, (X%, §%; 81( )y- ‘.i;;* (31)

8325 S

6j =&, (Yj*)
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The equality of the f's requires that
éi(r) = Bi(T); gi(t) 3 gi(K) (33)
where for trapezoidal wings the gi's are defined by Eq 5. The equality
ii of the F's, in combination with the equality of the f's, requires that
:5 ;r/‘; = 1./ (34)
; Er/c; = Kp/0 (35)
' alo = a/o (36)
% For trapezodial wings, the invariances specified by Eqs. 33 require
that
i : A tan A = A tan A (37)
i L L TR (38)
é. It is apparent that the transform2tions of Eq. 14 are consistent with the
% conditions of Eqs. 37 and 38 which are a consequence of resiricting the
f analysis to a family of wings. Also note that Eq. 37 is equivalent to the
3 pair of Eqs. 28 and 29.
2
3 The boundary condition on the wing in the transformed space is given
] b
2 d > + 2 S
3 ' (5§)2-0 0 ® g POAN, P9 emvewe ) (39)
€5~ § Applying the transformations of Eq. 14 to the boundary condition in the
¢ i original space yields
i A sz 9% i 3 e 15 (40)
. % (Do = 120 Joy v, s e
; 1 Equations 39 and 40 are similar if (G/0) = solsusz). This condition,
: an invariant of the transformation, may be written as (2/0) = (2/0). In
, applying the similarity laws, the aforementioned invariant is frequently
o employed in the form
(i/0)” = (/o) (41)
b
t
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where the value of w is arbitrarily selected to achieve a particular
desired form for the invariant parameters in the final formation gf the
similarity rules. Common choices are (-1) and (2/3) respectively for
subsonic and transonic flows.

Assuming negligible lateral flow, the streamline slopes in the two
spaces are

o - 28102 _ S 3¢/oz - 8 30/0z
U sysz U # (43)

yielding the result (2/0) = (2/0), where, as for Eq. 41, we employ the
form

(a/e)* = (al0)® (44)

Since the jet sheet is a stream surface, Eq. 44 applies to the jet-sheet
slopes ejs and 0 & A basic parameter for the jet sheet, however: is the
slope, ej, at the wing trailing edge. Applying Eq. 44 to Gj and ej
yields

@18 = (2/04)® (45)
where
9_1 =~ (o + aj)’ éj e ez (& * gj) (46)

Equation 46 may be written as

(E—--"l),@ Gj (S +1)

Oj . Bj j j

For ¢ = Gj, Eq. 26 yields
a/sj = QIGJ
The above equations yield

» - 4
6,704 = 8;/8, (0 = 8y) (47)
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When o is selected to be Gj, an optional form for Eq. 45 is, therefore,

@Y = @/6)" (0 =8 (48)

The compatibility condition for the jet sheet in the original space
is given by Eq. 8; in the transformed space it is

1 3¢ et 4
G n = 4 ( 55 )l("cj (49)

Applying the transformations of Eqs. 14 and 44 to Eq. 8 yields

Ainp 3¢ ! 1 30jg
AT, (175 520300 = & 5 Toglsusy) *x GF ) s
or
3 36
) ¢ Sz is
EQ(E%)5=° TRaghr Y (50)

The ratio (sz/sx) may be obtained from Eq. 24. Substituting in
Eq. 50 yields

128 _& 9 1/3 %5
5. 00 T3 G G ) Koy (51)
From Eqs. 49 and 51
where, from Eqs. 25, 41, 45, and 48, the ratio (2/Q) required for
Eq. 52 is given by any one of the following equations
[ i sd 3.
Bw €/By €
a/a =4 olo (53)

éj/@j

§

Equations 52 and 53 are the invariant conditions for the jet-momentum
coefficient. Note that if o is selected to be other than cj or oj

n
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(with o selected correspondingly), Eq. 53 permits three optional choices
for Q/Q, but if o is selected to be Gj or @j (with o selected corre-
spondingly) only two options are available for 9/9.

The relation between the pressure coefficients at corresponding points
in the two spaces is given by

S SR, B BT
Cp i ) e T
or

~ S

B Gl % (54)

Sys

: . 2/3 1/3
The factor (s¢/susx) in Eq. 54 can be written as (s¢/susx) (s¢/susx)
and appropriately manipulated to give

= 2/3 _1/3
GLi e S (55)

SuSx

Substituting Eq 55 in Eq. 54 and indicating the functional dependence of
the pressure coefficient yields

(8/92)1/3CP [%*, v*, (69)1/32*; Ig, Ié]

: LA (56)
- @Y%, [, 54, GV T, T

where
IG = y*I. y*O’ A(:9 Ats AK (57)

Ip = ((tan N)/BL), 8.4, T/0, Ki/o, alo, /)%, (@/0)", ()™ (Rey )(58)

and KTr is given by Eqs. 9 and 10. The parameter o may be selected as

any one of the parameters Tps Kps @s @j, or 6j depending upon.the type of
problem under consideration. The form of the parameter ¢ (and hence &)
is arbitrary for subsonic linear flow, and, in accordance with Eq. 20,
ise=Uk (€= UQE) for nonlinear transonic flow. The optional choices
for the form of @ (and hence ) are specified by Eq. 53. The value of w
is arbitrary and depends upon the type of problem under consideration.
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Common selections for w are (-1) and (2/3) respectively for subsonic

and transonic flow. When o is selected to be Oj or §., the underlined
parameter in Eq. 58 is omitted. Additionally, a selection for o that
yields unity for any one of the ratioed parameters in Eq. 58 indicates

a lack of an invariance constraint on that ratio. The invariants IG and
IF are separately identified since the IG invariants are purely
geometric at all times, whereas the IF quantities may consist of a mixture
of geometric and fluidynamic invariants, the exact nature of which
depends upon the specific forms selected for o, @, and €. There is no
unique combination of the similarity parameters appearing in Eqs. 56 and
58. The parameters shown may be rearranged to give a wide variety of
combinations by appropriate manipulation of Eqs. 34, 36, 37 and 53
(noting the equivalence of the ratios on the right-hand side of Eq. 53.)
Such a procedure is permissible providing the total number of invariant
parameters remains unchanged in any rearrangement.

The following aerodynamic coefficients are defined

C = CLI‘ ¥ CLR (59)
b
CLp = :Lbr ” (Cp, = Cp,)dx*dy* (60)
S*

1
Oy e ﬂ 0; (&) dy* (61)
MU 1T et

-1
Cpy =01 Cp, (62)
Cnp = le.. ¥ CmR (63)
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be
o 555 || 5 €, - G (o
g
1
Cay = bee x*; cj 0 Eydy* (65)
R~ 28 s R CF

-1

where (-01) is an appropriate downwash angle and the small-angle
assumption (sine.=0j) has been employed in the jet-reaction coefficients.

i
] 3
|
3 Application of the similarity rules yields the following results
! 5
: Cpxt, v, 0) = G G, yx, 05 16, 1P) (66)
2
Q2.1/3
4 Crg = &) iy (Igs Ip) (68)
2
,, a = &Y ag, (69)
1 { 5.1/3
i Cpy = (%_) p; (Ié, Ip) (70)
i
k| g2 113
-‘ Cop = ) Mp (Igs Ip) (71)
9 2
- 1 ClnR = (-2—) 1/3MR (IG’ IF) (72)
2
= GV g, 1 (73)

where IGl and IF are given by Eqs. 57 and 58, respectively, and

L= LF + LR and M = MF " MR.

14
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Since in the linear case the form of ¢ may be selected arbitrarily,
it is of interest to examine the consequences of several choices for this
parameter. For € = 92 (8 = 52), Eq.56 shows that the pressure coefficients
at affinely related points in the original and transformed spaces are
identical. For € = Bm3, Eq. 25 shows that @ = @, from which it follows
from Eq. 41 that o = § and, from Eq. 45, that o, = éj. Finally,
equations 34, 35, and 36 show that the thickness ratios, camber ratios,
and angles of attack are identical in the original and transformed spaces.
For € = U k, Eqs. 19 and 20 show that the similarity parameters will be
identical for both linear and nonlinear flows. This allows theoretical
solutions of the linear and nonlinear flows to be piotted on the same
set of graphs in terms of the same set of parameters. The two theories
would, of course, yield different curves on such plots. The curves for
linear theory would be valid for purely subsonic flows, but may or may
not be valid for transonic flows. The curves for nonlinear transonic
flow would be valid not only for transonic, but for subsonic and
supersonic small-perturbation flows as weil. ;

When the foregoing similarity rules are applied to two-dimensional
flows, the finite-span dependent terms are obviously omitted.
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SECTION III
COMPARISON WITH PREVIOUS ANALYSES

For the unblown wing there is no dependence upon cj and éj, and the
foregoing results may be shown to reduce to those of various investigators
by appropriate selection of @, €, and o, and, perhaps, some additional
manipulation of the invariants as previously noted. The results of
Spreiter (Appendix B, Ref. 5), for example, may be obtained by using
Eqs. 28 and 29 to replace A tan A with 8_ tan A and taking w=1,
a=g,’/e, e=8 %), and o=t for linear flow; and taking w=1/3, 0=t ,
e=xU_, and s 5 for noniinear flow.

As mentioned previously, there are no other similarity analyses (to
the best of this writer's knowledge) for nonlinear jet-flapped-wing flow,
hence comparisons will be limited to Tinear flow. Comparisons will be
made with the work of Siestrunk (Ref. 1), Levinsky (Ref. 2) and Elzweig
(Ref. 3). Each of these investigators uses a different scaling law.
There are, perhaps, other works, but the foregoing provide sufficient
variety for the present purposes. Among the aforementioned analyses,
Levinsky's is the only one applicable to finite-span wings; the other
treatments are for two-dimensional flow. None of the analyses include
second-order terms in the jet internal flow; hence, in comparing with
the present work, the parameter K11 will be taken as unity.

Siestrunk employs a scaling that maintains equal angles of attack
and jet deflection angles in the original and transformed spaces.
Levinsky employs Gothert's scaling (see Ref. 6), which is applicable also
to axially symmetric flow. Elzweig employs a scaling for which the
wing-surface pressure coefficients are equal at affinely related points
in the original and transformed spaces.

The results of Siestrunk are obtained by taking T,7K,=0, 0=a, E‘BwB'
2=1, and w=-1. Those of Levinsky are obtained by taking T,.7K.=0, 0=,
szswh,naem’l, w=-1. The results of Elzweig are obtained by taking

74
Tr=Kr=0, o=a, €=B_", Q=B and w=-1.

16
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SECTION IV
COMPARISON WITH EXPERIMENT

As noted previously, for jet-flapped wings there is no experimental
data of appropriate configurational simplicity and of sufficient gener-
ality in parametric variations to permit validation of the nonlinear
rules (to the knowledge of this writer). The data available for
validation of the linear rules is rather sparse and is plagued with
uncertainties regarding wind-tunnel wall corrections. Nevertheless some
limited comparisons are made in this section. The data sources selected
for comparison are: (1) Air Force/Northrop tests (Refs. 8 and 9),

(2) Air Force/Convair/Canadian tests (Refs. 10, 11, 12, and 13), and
(3) French 0.N.E.R.A tests (Ref. 14). The first two test series are
for two-dimensional airfoils, whereas the third is for a finite-aspect-
ratio wing employing a semispan test arrangement.

AIR FORCE/NORTHROP TESTS

These tests (Refs. 8 and 9) were conducted at the Arnold Engineering
Development Center (AEDC) in the 4T wind tunnel which has a 4-x 4-foot
porous-wall test section. The model tested has a modified NACA 64A406
airfoil section, a 10-inch chord, a 20-inch span and was mounted between
two large end plates. Tests were conducted at Mach numbers of 0.70, 0.80,
0.85, 0.90 and 0.95 and at effective jet-flap deflection angles (§.) of
0, 35, 55, and 88 degrees. Forces and moments were not measured directly,
but were deduced from measured surface pressures. The data presented
in Refs. 8 and 9 was not corrected4 for tunnel or end-plate interference
effects. Therefore, for the present comparisons an approximate
correction is derived in Appendix B of this report.

Since the camber line of the airfoil used in these tests is almost

parabolic, the parabolic camber-line relations of Appendix C are used in
estimating the airfoil aerodynamics. The applicablie incompressible 1ift

4Private communication with the test conductor.
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3

coefficient relation is given by Eq. 5 in Appendix C. Taking € = B_

2=1,0=a, and w = -1 in Eq. 69 yields, for the subsonic similarity
relation,

1 ;
cz = 'BT [KCEK (BQKTch) + acza (BwKan) + Sjczsi (BmK’!\’Cj)] (74)

The consequences of Eq. 74 are compared with experiment in Fig. 3.
The 35-degree jet-flap deflection case was selected for comparison since
the theory is more strictly applicable to smaller jet-flap angles. The
experimental data shown is for a constant geometrical angle of attacks,
which differs from the actual aerodynamic angle of attack due to
tunnel interference effects. It would have been preferable to present
the experimental results at a constant aerodynamic angle of attack, but
the data of Refs. 8 and 9 for dj = 35° was too meager6 to permit
construction of the required cross plots. The theoretical results
directly comparable to experiment are shown by the solid symbols. These
results were calculated using the aerodynamic angles of attack obtained by
the method of Appendix B. The corresponding aerodynamic angles of
attack are listed in the table on the figure. Point comparisons are
not shown at supercritical Mach numbers since the tunnel interference
analysis is not valid in this regime. The theoretical lift-coefficient
variation with Mach number at a constant angle of attack is shown by the
solid lines in Fig. 3. The constant angle of attack is the average of
the aerodynamic angles of attack for M =0.7 and 0.8. These limited
comparisons show that fairly good agreement is achieved between theory
and experiment.

The relative importance of the jet-sheet second order effect can be
seen by comparing the dashed-line curve for Kn=1.0 with the solid line

5The angle of attack here is relative to a chord line through the leading
and trailing edges of the mean camber line. The angle of attack (say &)
employed in Refs. 8 and 9 is relative to an arbitrary chord line. The
two angles of attack are related by o = a - 0.60.

6The bulk of the data presented was for 65 = 88°, an unacceptably high
value with which to make valid theoretical comparisons.
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curve for the variable K" shown. In this case the second order effect
is significant. The dashed-dot line in Fig. 3 shows the incremental 1ift
coefficient due to camber with blowing, (Acy), , where

eg), = 5= [er, B pep-es, @] (75)

Details regarding the calculation of Cg, are given in Appendix C. The
i incremental blown-camber-line contribution is frequently neglected for the
reasons noted in Appendix C. For the example of Fig. 3, however,

although (Ac,L)'< is small, it is of sufficient magnitude to warrant its
inclusion.

G il L

AIR FORCE/CONVAIR/CANADIAN TESTS

These tests (Refs. 10, 11, 12, and 12} were conducted in the
Canadian National Aeronautical Establishment (NAE) two-dimensional,
high-Reynolds number, transonic wind tunnel at Ottawa, Ontario. This
tunnel has a 60x60-inch test section, porous upper and lower walls, and
employs sidewall inserts to form a 15x60-inch, two-dimensional test
section. Several different jet-fiapped supercritical-type airfoils were
tested in the series of tests reported in the cited references. The
airfoil with which comparisons are made herein was designated as an
NAE 001002 airfoil, possessed considerable aft camber, and had a chord
of 15 inches. Forces and moments were measured by sidewall balances with -
supplementary data taken by a wake survey rake. A tunnel-interference
angle-of-attack correction of the same form as Eq. 1 in Appendix B was
applied. The factor k, however, was obtained from drag and axial
momentum considerations rather than in the manner of Appendix B.

Considerable spread in the value of k was found, but a single mean value
of 0.55 per degree was employed in the data reduction.

Bt chihies e i
PO P

~ A comparison of the results given by the subsonic similarity relation
i of Eq. 74 with some NAE test data is given in Fig. 4. Figure 4 shows :
3 that rather good agreement is obtained for subcritical Mach numbers. ?
| ) Note also that the lift-coefficient increment due to the blown camber

=% line is significant.
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Some comment is appropriate regarding the reference angle of
attack, o', employed in Fig. 4. When the unblown experimental data used
for Fig. 4 was reduced to zero Mach number by the Prandtl-Glauert
relation, the angle of zero 1ift was found to occur at a 0.66-degree
angle higher than predicted by thin-airfoil theory. This discrepancy
is assumed to be due to a constant geometric error in the experiments,
which is equivalent to considering the angle of attack to be measured
from a chord line different from that specified.7 In the present case,
the angles of attack (in degrees) relative to the specified and apparent
chord lines are related by &' = o - 0.66.

The camber-line aerodynamics for Fig. 4 was calculated by the method
of Appendix C for an arbitrary camber-line shape. Note also that the
angles of attack (in degrees) relative to the specified chord line and the
camber-line chord are related by & = o - 0.34.

The relative importance of the jet-sheet second order effect can be
seen by comparing the dashed-line curve for KTT = 1.0 with the solid-1ine
curve for the variable Kn shown. In this case the second-order effect is
negligible. For a jet-momentum coefficient of a magnitude sufficient
to choke the jet nozzle at a free-stream Mach number less than 0.5, the
second-order effect would be significant.

FRENCH O.N.E.R.A. TESTS

The French tests (Ref. 14) were conducted on a half-span rectangular
wing model of aspect ratio 3.4. The airfoil section is an NACA 64A010
airfoil truncated and modified at the 88% chord position yielding a
11.4% thick airfoil. Further details on the model and facility were
not available.

7This assumption is justified by an improved agreement between theory
and experiment.
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In applying the subsonic similarity law, Hartunian's theory (Ref. 15)
for a finite-span jet-flapped wing is employed to obtain the wing
characteristics at zero Mach number. On the basis of Hartunian's
relations, the 1ift, induced angle of attack, and induced drag,

“respectively, are given by:

acg, (c,) + jSlai (Cj)

& J
(CL)M‘»=0 i <y (c}) (76)
Tk
A + ZCj
Cply o
(-ei)Mw=0 = TA + 2cj 1)
2
(CL )Mw=0

C R e e
( Didy =0 = ('Oi)Mm=0 (CL)Mm=0 T TA + 2¢cj (78)

Taking e=6m3, Q=1, o=a, and w=-1 in Eq. 69 yields the similarity relations

acg, (B K cq) + 6 cnﬁj (8K c )]

CL = 'L
Beo 025j (BoKpc3) (79)
e TBLA + 2BmK1er
(-04) = (-01)y _q Cpg = (“Ot)y o L (80)

Determination of K1T in Eq. 79 requires values for the relative
nozzle height, hj/c, and the nozzle-flow coefficient, Ch Since neither
of these quantities was available in the referenced document, guessed
values were employed. For this purpose, the nozzle-flow coefficient
was taken to be unity and hj/c to be 0.008. The value of hj/c was
selected in the following manner. For tests conducted on an NACA 0018
airfoil in Ref. 14, the average value of hj/c was 0.0129 (see Fig. 10
of Ref. 14). Ratioing this value according to wing thickness yields

hj/c = 0.008.
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A comparison of the lift-coefficient scaling given by Eq. 79 with
the experiments of Ref. 14 appears in Fig. 5, where reasonably good
agreement is obtained for a jet-deflection angle of 29°, but poorer
agreement is obtained for 6j=-2°. Apparently the influence of KTT is
negligible in this case.
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SECTION V
CONCLUSIONS

Applying the known principles of scaling, linear-subsonic and
nonlinear-transonic similarity rules have been derived for a finite-
span-jet-flapped wing with partial or full-span blowing. In deriving
the rules, an attempt was made to keep the presentation as general as
possible in order to display the interrelation between the linear and
nonlinear rules and to allow freedom in adjusting the scaling to
emphasize the parameters and type of scaling most appropriate to a
particular problem under consideration. Although this generalized
approach makes the analysis slightly more difficult to follow, it is
believed to be worthwhile for the additional visibility it provides.

The effect of jet-supply pressure ratio was delineated by considering
second-order quantities in the jet-sheet compatibility condition. The
importance of jet-supply pressure ratio depends upon the flight Mach
number at which the jet nozzle (assuming a convergent configuration)
chokes. At this time it is not known whether typical flight vehicles
will fall within the parametric spectrum where jet-supply pressure ratio
is an important consideration. In comparisons with three different sets
of wind-tunnel data, jet-supply pressure ratio was found to be of
significant importance for only one set of data considered.

This investigation also disclosed that camber-iine effects with
blowing assume more importance than heretofore was the case in jet-
augmented mechanical flap applications.

Finally, although reasonably good agreement was obtained for
limited comparisons with experiment for linear-subsonic flow, there is
a critical need for well-designed wind-tunnel experiments to validate
both the linear subsonic and nonlinear transonic similarity rulec. The
experiments should be planned to eliminate tunnel interference effects
or should be conducted in a facility where the magnitude of the inter-
ference can be accurately predicted. In the tests parametric variations
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should be made within ranges consistent with the small perturbation
assumption of the similarity analysis. Parametric variations also
should be specifically tailored to test three-dimensional effects and
the nonlinear transonic rules.
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APPENDIX A

"

SECOND-ORDER JET-SHEET COMPATIBILITY CONDITION
FOR COMPRESSIBLE FLOW

ek, .

A A

For the jet sheet to be compatible with the external flow, the

% A jet-sheet internal static pressures at the sheet upper and lower

A ! ' boundaries must be equal to the corresponding static pressures in the
; f external flow, and the sheet boundaries must be stream surfaces of the
¢ external flow. In deriving the compatibility condition, the lateral-

flow velocity perturbations are assumed to be negligible compared to

the vertical and longitudinal ones, thereby permitting the jet-sheet
flow to be treated as two-dimensional in any plane where y = a constant.
A similar approach is employed by Maskell and Spence in their treatment
(Ref. 16) of a finite-span jet-flapped wing. With reference to Fig. 2,
it is also assumed that the jet-center-line radius of curvature,R, is
large, the jet thickness, h, is very small, and the downward displacement
of the jet is small, such that h/R << 1 and R™! = - 205/3x.

In jet-flap applications the jet-exhaust-nozzle height, hj’ is

g usually rather small due to the geometrical constraints imposed by the
' } thinness of the airfoil trailing edge. Consequently, for a convergent
E nozzle, choked (critical) flow may occur if the jet-supply pressure is
- sufficiently high. Assuming the jet-sheet internal flow is isentropic],
| the jet flow downstream of the nozzle will have a differing character
E | for subcritical and supercritical nozzle flow conditions. For sub-
4 critical nozzle flows the magnitude of the nozzle exit pressure will be ; :

{ essentially governed by the external freestream static pressure. For % &
; ! 3 the limiting case of zero jet thickness in Spence's incompressible flow i
A analysis (Ref. 17), it is implicit that the static pressure along the
?“3 jet center line is equal to the freestream static pressure. As will be
: seen subsequently in this appendix, this condition is also approximately

R s © et

]In the real flow, shock waves are likely to be present. The assumption
of isentropy is an approximation, strictly valid for supercritical duct-
] f supply pressures only slightly exceeding the critical presssure
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true for a first-order compressible flow. If, however, the nozzle flow

is supercritical, the nozzle static pressure is governed by the jet-supply
pressure and may on the average be greater than the freestream static
pressure. In the analytical modeling for this case, therefore, some
provisions must be made for accounting for the longitudinal decay of

the center-line over-pressure within the jet. This can be accomplished

by a second (or higher) order analysis of the jet-sheet internal flow,

as in this appendix.

With reference to Fig. 2, the internal and external-flow field
horizontal-velocity components are given respectively by

R u=U_ +u (A-1), (A-2)
where U' << U_ and u' << U_.

The irrotationality condition, in natural coordinates (n,s), is given by
Ref. 6 as

l13u _1 (A-3)
& an r
Expanding r along n gives
r =R+ (ar/an)on + ———— (A-4)

Substituting Eq. A-4 in Eq. A-3, integrating, and applying the condition
G=G° at n=0, yields

- ®xpfn 1 3r, a2 A-5
o [R 2 (Bn o Rz ] ( )

=ye

Assuming [1-(ar/an)°]<< 1 and (n/R) << 1, making use of Eq. A-1, and
expanding Eq. A-5 yields to second order in small quantities

at =0+ (@, + 8 (/R (A-6)

o

i 0+ s B

e

=B P

i sl a s i

L R
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To an order consistent with nonlinear transonic-flow theory, the
pressure in the external stream is given by

P=p, ~0,U.2 (u/u) (A-7)

The jet-sheet internal pressure to second order is

b = b e ~r2
pomp. p,,U‘,,,Z I}'+ 1 (1-M_2) 171_'_2] (A-8)
U 2 i

| 30 3

‘o0

Along the center line, Eq. A-8 gives

~ ~ A a W' 1 20D a'o
po = = - pmuwz [—f;—— + "2" (1"Mm ) ﬁ“j (A-g)

The internal pressures at the upper and lower jet boundaries are given
by substituting G'u and G'g respectively in Eq. A-8, where from Eq. A-6,

G'u and U', are given respectively by
'y = 'y +1 @+ 3 /) (A-10)
u'y =u'y - % (Us 4 ﬁ'o)(h/gs (A-11)

Applying the boundary conditions

~

Py = Py and p, = p, (A-12)

and employing Eqs. A-8, A-10 and A-T1 yields to second order, the result
2t

Pu = Py = - pula? @ [1+ -2 <-},’—°)] (A-13)

The variable h(s) may be determined from global continuity. Application
of continuity between downstream infinity and an arbitrary s-station

yields
h/2
R, = (p/py) (0/Us)dn (A-14)

h/2

RIS S

ORI 2D et e e

B T s

| ¥
E
¥
¥
&
-
®
i



e

AFFDL-TR-76-86

Employing Eq. 39 of Ref. 4, the density to second order is

TS R e R 3
. 1-M {5: > [1-(2-y)M ],_m2 (A-15)

Making use of Eqs. A-2, A-6, and A-15 in Eq. A-14 yields, to second
order

bon- a2 g—"-]%-a (A-16)

Substituting Eq. A-16 in Eq. A-13 yields, to second order

Py - Py = =(p 0 h) (1+ %9-) Us (A-17)

o
jeldn L

Solving Eq. A-9 for (ﬁé/ﬁw) and substituting the result in Eq. A-17
yields, to second order

~oa A .30
Py - Py = - Cn (00 U, (219 (A-18)
where
Po - P
(S e
: Ve M, (A-19)

and R ha; been replaced by the approximation R']z -aojs/ax. The

parameter Cn, which varies longitudinally, is a factor modifying the
usual jet-sheet compatibility condition.

It is of interest to examine Cn in more detail.

1f, from Eqs. A-8, A-10, and A-11, an expression for (ﬁu + 62) is
derived, and in this expression Eqs. A-9, A-16, and A-12 are substituted
respectively for (Golﬂm), (h/R), ﬁu, and 51, the following result is
obtained to second order

R
- o Us ~ N 2
Bo = BUFTE 4 0= (1 2) (M (A-20)

o 2 8

O Y T

R S a——
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In the vicinity of the jet sheet, let

L L} 1
u =u +
5 u

= (A-21)

where u‘s and u'aS are respectively the symmetrical and antisymmetrical

parts of the perturbation velocities relative to the jet center such that

U'Su = u'sz = uls; (ulas)u . (u'as)g (A‘ZZ), (A'23)

From Eqs. A-7, A-22, and A-23, it is easily shown that
(1/2)(py + py) = p, - 0,U.2 (u'g/U) (A-24)

Recalling that p_ = p_, Eqs. A-20 and A-24 yield, to first order

ﬁo TP Mi2e uty _
vt 62 &) P

o

The velocity u'S is a free-stream perturbation velocity at the jet

boundaries due to jet thickness. The important point here is that to

first order ﬁo(s) is equivalent to the pressure distribution along the
center line of a thin jet of finite thickness exhausting at zero
inclination into a surrounding stream. Consequently, Eo(x) can be

determined independently of the more general curved jet-sheet flow
problem.

For subcritical nozzle flow into a subsonic external stream it is
well known that Bj=p°o and hence it is reasonable to take Bo(x)=pco for
this case. For choked nozzle flow into an incompressible external
stream, an approxiate solution for ﬁo(x) could possibly be found. With
6o(x) then known, Spence's (Ref. 17) integral equations could be
appropriately modified and possibly solved. The resulting solutions
could be extended to subsonic linear compressible flow by means of the
similarity relations herein. The solutions so obtained would be

functions of the supply duct pressur~ ratio (ﬁ/pm) in addition to c

g%

Note, however, that the present analysis is a small perturbation one,
for which (B -p,)/yp.M,? << 1.0, from which it follows that C_~ 1.0.
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With this in mind, it hardly seems worthwhile to treat Cn as a variable.
Instead, a constant average value <Cn> will be sought such that

< 1’;/5* (A-26)

<Con w 1.0 for ﬁ/p <

<c. > # 1.0 P/ e 2 Blp, (A-27)

(ﬁlﬁ*) =2+ = 1,893 (v = 1.4) (A-28)

To determine <Cn> for the choked-nozzle-flow case, assume that
P> = 1/2 (b5 + B,) = 1/2 (5, + p_) (A-29)
This yields

(by/p,) - 1
Cp> 21 ~ ————— (A-30)

ZYMw

For subcritical nozzle flow, the flow field across the nozzle is
affected by the external stream, generally is nonuniform, and therefore
is inappropriate for use as a reference stream. In the previous analyses,
this is one reason for referencing the local-flow state within the jet
sheet to the jet internal flow at downstream infinity. For choked or
supersonic nozzle flow, the details of the flow across the nozzle are
governed by the upstream conditions in the nozzle duct, and the duct
contours can be designed to give a uniform flow at the nozzle exit.
Hence, from the standpoint of flow uniformity the nozzle exit flow can be
used as a reference stream. However, for this case, when the nozzle flow
is sonic, the assumption of small perturbations is locally invalid. This,
then, is a second reason for employing the downstream jet flow as a
reference stream in the previous perturbation analyses. Tentatively,
disregarding the second reason, a perturbation analysis from a choked
nozzle stream can be employed to yield additional insight regarding

S >,
CTT

A perturbation analysis paralleling that performed for M_ will now
be outlined for flow perturbations referenced to the nozzle exit.

30
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For convenience in discussion, the nozzle-exit Mach number is tentatively
assumed to be arbitrary. For the aforementioned analysis, the applicable
equations are of the same form as the Eqs. A-1 through A-19, with the
flow-state variables at downstream infinity within the jet sheet replaced
by those at the jet-nozzle exit. With these considerations in mind,
evoking continuity within the jet, and taking the jet exit Mach number

to be unity, the following result may be deduced by analogy with

Eqs. A-18 and A-19.

A Da=D .00
~A A A ; P*-P,
Py - By = - BT E 0+ T 0 (A-31)
© *

Making use of Eq. 38 in Ref. 4, it may be shown that to first order

(o= ks <o (A-32)

for (p,-p,)/YPsx << 1.0 substituting Eq. A-32 in Eq. A-31 yields to
second order the result

90
Py =P, = - C', G0 0, 19 (A-33)
where
” o < D
C'Tr = (1 - T) (A-34)

I1f, as before, a mean value of bo given by Eq. A-29 is employed, the
mean value of C% is

Pa _ Po,
' >zl ——5;3:— (A-35)
For
B/p, < (Blp) < 5 (A-36)
it is found that
< > = <c' > (A-37)
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where <Cﬂ> and C'"> differ from each other by less than 3%. In view of
its simpler form, <C'“> will be employed. The second order jet-sheet
compatibility condition then becomes

20
Cp, - Cpy= ~Kncje (13 (R-38)
where
K = 1.0 o for (B/p, < B/p,)
3 P/p, 5 ; (A-39)
Byimidm e (1 - S ) for ((P/py) < (B/p) < 5
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APPENDIX B
INTERFERENCE CORRECTION FOR AIR FORCE/NORTHROP TESTS

The small magnitude of the lift-curve slopes for the unblown-airfoil
data in Refs. 8 and 9 at the sub-critical Mach numbers of 0.7 and 0.8
indicates that interference effects were 1ikely present in the tests.
Although there is no independent data available to directly support this
contention, an engineering estimate can be made by transforming the
slopes to the incompressible-flow regime (M =0) by the Prandtl-Glauert
rule] and comparing these with a variety of data for approximately
similar airfoils.

Application of the Prandtl-Glauert rule to the unblown airfoil data
of Figs. A-1 and A-2 in Ref. 9 yields incompressible-flow 1ift-curve
slopes of 3.7 and 3.5 per radian respectively. For six percent thick
airfoils of the NACA 6-series type, the Tow Mach number experimental
lift-curve slopes documented in Ref. 19 for eight different airfoils are
6.42, 6.30, 6.25, 6.25, 6.02, 6.02, 5.73, and 6.19 per radian. The
foregoing comparisons support the contention that the data of Refs. 8 and
9 are in error due to interference effects.

The average lift-curve slope for the eight airfoils cited above is
6.15 per radian. For convenience and in view of the uncertainties
involved, however, the theoretical value of 27 will be employed in the
analysis which follows.

The interference-induced angle of attack (geometrical angle of
attack, a_, minus the actual aerodynamic angle of attack, a) in the

wind tunnel is assumed to be given by

Sp « o cg,r/k (B-1)

1

It is generally conceded (see, e.g., Ref. 18) that the Prandtl-Glauert
correction to the 1ift-curve slope gives reasonably good results for
subcritical Mach numbers.

Py
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where k is the interference factor which is to be determined. A similar
correction is applied to the data of Refs. 10 through 13, except that k is
determined in a different manner. Differentiating and manipulating

Eq. B-1 yields

dec
zr/da

_degrda (B-2)
dczr/da

k =

where dclr/dag is the 1ift curve slope in the wind tunnel and dcl /do

is the true 1ift curve slope in free air. Equation B-2 applies to both the
unblown and blown airfoils, since cy_ is the circulation 1ift coefficient.
However, the unblown airfoil data only is used to obtain k values which

are then applied to the blown airfoil in correlating the similarity rules
with experiment. The lift-curve slope required in Eq. B-2 is obtained

from

(chF) Jc
da

2
e DY )
M, B~ (€ Jda )Mm=0 (B-3)

where, as previously stated, the incompressible-flow slope is taken to
be 2.

From the unblown airfoil data of Figs. A-1 and A-2 in Ref. 9, k was
determined to be 12.38 and 13.41 per radian respectively for free-stream
Mach numbzrs of 0.7 and 0.8.

. ot
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APPENDIX C
ANALYSIS OF CAMBERED JET-FLAPPED AIRFOILS

The most common application of the jet-flap principle to date has
been to jet-augmented mechanical flaps for use during the take-off and
landing flight phases. For this application, the 1ift coefficients
achieved are very high and the relative 1ift contribution due to camber-
line jet-sheet interaction is negligible. For pure jet-flapped wings at
high speeds, the camber-line contribution, although small, can be a
relatively higher fraction of the total 1ift and should be taken into
account in some instances. Because of previous emphasis on very high-
1ift applications, 1ittle attention has been given to the analysis of
camber-line effects. The sole investigation on the subject appears to be
that of Hough (Ref. 20), who has formulated an analysis for a polynomial
camber line, but has provided specific numerical results only for the
parabolic case. There is a need for a prediction capability for
arbitrary camber-line shapes, since the parabolic camber line is not
necessarily the best one for high-speed applications. Supercritical
airfoils, for example, are possible candidates for jet-flap application.
Many of these, such as the NAE 001002 airfoil treated herein, are
typified by considerable aft camber.

Before pursuing the subject of arbitrary camber further, it is of
interest to comment on Hough's parabolic results. Hough notes that, as
a consequence of his employment of a 3-control-point calculation
procedure, his results may be in error at lTow values of the momentum
coefficient. Since at high speeds the momentum coefficient is typically
small and since one of the airfoils examined in this report has an approxi-
mately parabolic camber 1ine, it was deemed of interest to investigate
the magnitude of the error noted by Hough. Consequently, the derivatives
3C£/3K and acm/ax were recalculated using a 9-control-point calculation.
The resulting curves, along with a 3-point calculation, are plotted on
Fig. 6. Figure 6 shows that the error for the 3-control-point calculation
increases significantly as the momentum coefficient approaches zero.
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One could further develop the Hough formulation for polynomial
camber lines for possible application to arbitrary camber lines. It
appears, however, that the development would tend to become unwieldly
for higher-degree polynomials, and even these might not adequately
represent some camber lines. Instead, an alternative method is presented
herein. The calculation procedure for this method involves only a
simple quadrature, is easily understood, and is readily performed by
hand.

Applying the principle of superposition, the solution for a jet-
augmented, single-element, mechanical-flapped airfoil given in Ref. 21
can be used to obtain a solution for the segmented airfoil shown in
Fig. 7. The segmented airfoil, in turn, can be considered to be an
approximation to a continuous camber line. On this basis, the 1ift
coefficient and Teading-edge pitching moment coefficient due to camber
for the segmented airfoil of Fig. 7 with 6j=0 are given respectively] by

N
(C]L)K . 2‘ CR,G (st xn) (On i en-l) (C'])
n=0
N
(cp), = = } cmg (e, xn) (0 - 0,9) (c-2)
n=0
¥ y
ntl - ‘n
where 0, = m (c-3)
and x, = 0 and 6.1 = 6y = 0 (c-4)

]A method which avoids the use of camber-line slopes and is more accurate
than Eqs. C-1 and C-2 can be obtained by formulating the integrals
resulting from taking the 1imiting process in Eqs. C-1 and C-2. These
integrals can be integrated twice by parts yielding integrals whose
integrands involve the camber-line ordinate multiplied by an influence
function. The influence functions required in this approach were not
available at the time of this investigation, hence Eqs. C-1 and C-2 are
employed in the present calculations as a matter of expediency. The
details and influence functions for this second method will be
published in a technical paper at a later date.
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§ The derivatives Cog and Cmg are given in Ref. 212. In applying Egs. C-1
: through C-4, the spacings employed can be adjusted locally according to
@

whether © is varying rapidly or slowly.

A comparison of the results, using Eq. C-1, with a 9-control-point
calculation for a parabolic camber line is shown in Fig. 6. For the s
calculation shown in this figure, the segmented mean line consisted of é
straight lines drawn between x stations of 0, 0.05, 0.1, 0.2, 0.3, 0.4, :
0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 1.00 on the actual mean line. As can $
be seen, the agreement with the more exact calculation is excellent.

In general, for the incompressible flow about a pure jet-flapped
thin airfoil, the 1ift and moment coefficients are given respectively

by
P 3 3
LA e 4P
el e s e ik (c-5)
3 5 B
o TR _m
e Cooiy TR Y T 35, o (c-6)

where the derivatives with respect to a and §. are given in Ref. 21 and
the derivatives with respect to « for a parabolic camber line are given
in Fig. 6.

R St S92 M SRS

2Additiona] values were calculated at x= .1, .2, .3, .4, by a non-
linear interpolation method assuming the variation with x, to be
similar to the cj=0 case.
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(a) THREE VIEW

(b) SIDE VIEW (ARBITRARY y)

JET SHEET

Figure 1. Illustration of Flow Problem and Notation
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L

Figure 2. Notation for the Jet Sheet
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—SLi— EXP THEORY a(DEG) __¢;_ EXP THEORY g(DEG)
?

0 o ; .0225 O ?
o) ® -l44 o . -204
o ¥ -153 o o 216
R }-|.49* o } -2.10*

* DENOTES AN AVERAGE OF TWO ABOVE VALUES

1.0
cj=.0225 \
K o
06 *
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/
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Figure 3. Comparison of Theory and Experiment for Air Force/Northrop

Tests on a Modified NACA 64A406 Airfoil Section (Refs. 8
dj = 35 Deg, hj/c=0.0020

and 9); ag=-0.63 Deg,
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I.o \
cj=.0I5
o6 L
1.0
g
0.8 5
0.6 .
Ce
v 0.4 f ¢=0 . :
1 THEORY : |
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4 0.2 F i
4 © 0 EXPERIMENT g 4
| 0 i
' — - i o = WEETT j
H £~ (Acy)y , THEORY(K,VARIABLE) L
k| -0.2 e . g 7
| 1 O 02 04 06 08 10 :
E Figure 4. Comparison of Theory and Experiment for Air Force/Convair/
| Canadian Tests on an NAE 001002 Airfoil Section (Refs. 10,
| 11, 12, and 13); &' = -0.66 Deg, 6j = 30 Deg, hj/c=0.0030
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1.0 ~
K
o8 *+
0.5
0.4 5
0.3 | "////////// :
C
. 3, -2DEG ©
0.2 - N
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THE ORY &
0.@ F © o EXPERIMENT -
MODIFIED NACA 64A0I10 AIRFOIL
o 1 A 1 1
o) 02 04 06 08 1.0
Mm
Figure 5. Comparison of Theory and Experiment for French 0.N.E.R.A.,

Tests on a Finite-Span Wing (Ref. 14); o = 3 Deg, c = 0.023,
A= 3.4, h /c = 0.0080 (Guess)
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14 . ‘ ‘ :
METHOL SYMBOL
12 SEGMENTED MEAN LINE -~-=——--ﬁ
9 CONTROL POINTS
3 CONTROL POINTS o ————
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Figure 6. Comparison of Three Different Calculative Procedures for
a Parabolically Cambered Jet-Flapped Airfoil
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o

XN-1 > ’4
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Figure 7. Notation for a Segmented-Camber-Line Airfoil
with Trailing-Edge Blowing
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